
PRESHEAVES ARE COLIMITS OF REPRESENTABLE FUNCTORS

SHAWN BALAND

Let Set denote the category of all sets. The following is well known.

Theorem. If C is a category, then every contravariant functor F from C to Set (presheaf)

is a colimit of representable functors.

In this note we give a detailed account of what this means and why it is true, providing

two proofs, the first previously unknown to the author. We caution readers who are averse

to Yoneda’s lemma to turn back at this point.

The setup. Let Y : C → [Cop, Set] denote the Yoneda embedding. Recall that objects in

the slice category (Y ↓ F ) are natural transformations

C(−, x) // F , x ∈ C.

A morphism from C(−, x)→ F to C(−, y)→ F in (Y ↓ F ) is a morphism f : x→ y in C

that makes the diagram

C(−, x)
C(−,f)

//

""

C(−, y)

||
F

commute. It turns out that (Y ↓ F ) is the diagram category over which F is a colimit. For

the sake of brevity we will write Y (x) and Y (f) instead of C(−, x) and C(−, f) through-

out the remainder of our discussion.

Let P : (Y ↓ F )→ C denote the ‘forgetful functor’ that assigns an object Y (x)→ F to

x and a morphism f to itself. We construct a cone from Y ◦ P to F by assigning to each

object φ : Y (x)→ F in (Y ↓ F ) the projection

φ : (Y ◦ P )(φ) = Y (x) // F

in [Cop, Set]. That these projections form a cone follows automatically from the definition

of (Y ↓ F ), as illustrated by the commutativity of the above diagram. To prove that F is

a colimit, we need to show that this cone is initial.
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A ‘natural’ approach. Select an arbitrary cone from Y ◦ P to a functor G ∈ [Cop, Set].

For each φ ∈ (Y ↓ F ), let πφ denote the corresponding projection in the cone over G. The

key observation is that an assignment of morphisms

(φ : Y (x)→ F ) 7−→ (πφ : Y (x)→ G)

defines a cone from Y ◦ P to G if and only if

π : Nat(Y (−), F ) // Nat(Y (−), G)

is a natural transformation of functors from Cop to Set. (Here we have abused notation a

bit, identifying πφ and πx(φ).)

Now consider the evaluation bifunctor E : C × [Cop, Set]→ Set defined on objects by

E(x,H) = H(x).

Yoneda’s lemma provides a natural isomorphism of bifunctors

ι : Nat(Y (−),−)
∼
// E.

Since ι is a natural isomorphism, there exists a unique natural transformation θ : F → G

that makes the following diagram commute for all x ∈ C.

Nat(Y (x), F )
ι(x,F )

//

πx

��

F (x)

θx

��

Nat(Y (x), G)
ι(x,G)

// G(x)

Then θ is precisely the cone morphism required to show that our original cone from Y ◦P
to F is initial. (It is straightforward to check that completing the above diagram is equiv-

alent to being a cone morphism, by applying ι(x,G) to the definition.)

The entire proof may be further condensed to the following statement.

Proof. The category of cones under Y ◦ P is equivalent to the category of elements of the

functor K : [Cop, Set]→ Set given by

K(G) = Nat(Nat(Y (−), F ),Nat(Y (−), G)).

Moreover, conjugation by ι induces a natural isomorphism of functors

ι̃ : K
∼
// Nat(F,−)

under which a cone (G, π) ∈ elK becomes identified with the unique cone morphism from

F to G. �
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For those left feeling drowned, rather than purified, by this baptism of category theory,

we now recite the traditional proof in gory detail.

The pedestrian route. Select an arbitrary cone from Y ◦ P to a functor G ∈ [Cop, Set].

For each φ ∈ (Y ↓ F ), let πφ denote the corresponding projection in the cone over G. To

construct the required natural transformation θ : F → G on objects, let x ∈ C. In light of

the Yoneda isomorphism

ι : Nat(Y (x), F )
∼
// F (x),

every element of F (x) may be written uniquely as ι(φ) for some φ : Y (x)→ F . (Note that

we have abbreviated the notation ι(x,F ) of the previous section.) We set

θx(ι(φ)) = ι(πφ) ∈ G(x),

where

ι : Nat(Y (x), G)
∼
// G(x)

again denotes the Yoneda isomorphism.

To prove that θ is a natural transformation, we need to show that the diagram

F (y)

F (f)

��

θy
// G(y)

G(f)

��

F (x)
θx

// G(x)

commutes for each morphism f : x→ y in C. So let ι(ψ) ∈ F (y) with ψ : Y (y)→ F . For

convenience, write φ = ψ ◦ Y (f). In the cone over G we will then have πφ = πψ ◦ Y (f). It

follows that

(G(f) ◦ θy)(ι(ψ)) = (G(f) ◦ ι)(πψ)

= ι(πψ ◦ Y (f)) by the naturality of ι

= ι(πφ)

= θx(ι(φ))

= θx(ι(ψ ◦ Y (f)))

= θx((F (f) ◦ ι)(ψ)) by the naturality of ι

= (θx ◦ F (f))(ι(ψ)),

so the above diagram does commute.
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To prove that θ is a morphism of cones, we need to check that every diagram

Y (x)

φ

}}

πφ

!!

F
θ

// G

commutes. By the way in which the Yoneda isomorphism is defined, we have

ι(θ ◦ φ) = (θ ◦ φ)x(1x) = θx(φx(1x)) = θx(ι(φ)) = ι(πφ).

The injectivity of ι now forces θ ◦ φ = πφ.

Finally, to prove that θ is unique we select an arbitrary cone morphism τ : F → G. For

any x ∈ C and ι(φ) ∈ F (x) we then have

τx(ι(φ)) = (τx ◦ ι)(φ)

= ι(τ ◦ φ) by the naturality of ι

= ι(πφ) since τ is a cone morphism

= θx(ι(φ)).

This shows that τx = θx for all x ∈ C, hence τ = θ.

Remark. Every detail in the above argument may also be read off of the cube diagram

Nat(Y (y), F )
π

//

−◦Y (f)

��

ι

xx

Nat(Y (y), G)

−◦Y (f)

��

ι

xx

F (y)
θy

//

F (f)

��

G(y)

G(f)

��

Nat(Y (x), F )
π

//

ι

xx

Nat(Y (x), G)

ι

xx

F (x)
θx

// G(x)

whose solid edges are known to commute.


