## ASSIGNMENT 2, DUE MONDAY 25 SEPTEMBER

1. Use the row reduction algorithm to compute the solution set of the system

$$\overline{5}x_1 + \overline{2}x_2 = \overline{10}$$

$$\overline{2}x_1 + \overline{3}x_2 + x_3 = \overline{9}$$

$$\overline{10}x_1 + \overline{4}x_2 = \overline{9}$$

over the field  $\mathbb{Z}/11$ .

- **2.** Let F be a field. Determine whether or not the following are vector spaces over F. Explain your reasoning.
  - (a) The set of all polynomials over F that are divisible by the monomial x.
  - (b) The set of all polynomials over F having even degree, along with the zero polynomial.
- **3.** Determine which of the following are vector spaces over  $\mathbb{R}$ .
  - (a) The set of all functions  $f: \mathbb{R} \to \mathbb{R}$  such that f(0) = 1.
  - (b) The set of all functions  $f: \mathbb{R} \to \mathbb{R}$  such that f(0) = 0.
  - (c) The set of all differentiable functions  $f: \mathbb{R} \to \mathbb{R}$  such that f'(0) = 0.
- **4.** Let V and W be vector spaces over a field F. The (external) direct sum of V and W is defined to be the cartesian product  $V \times W$ , along with an addition given by

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 for all  $v_1, v_2 \in V$  and  $w_1, w_2 \in W$ ,

and scalar multiplication given by

$$a(v, w) = (av, aw)$$
 for all  $v \in V$ ,  $w \in W$  and  $a \in F$ .

Show that the direct sum of V and W is again a vector space. (Having proved this, the direct sum of V and W is usually denoted by  $V \oplus W$ .)

- **5.** Let V be a vector space over a field F. Show that if  $v \in V$  and  $a \in F$  satisfy  $av = 0_V$ , then  $v = 0_V$  or  $a = 0_F$ .
- **6.** Let V be a vector space over a field F and let  $U_1$  and  $U_2$  be subspaces of V.
  - (a) Prove that the intersection  $U_1 \cap U_2$  is also a subspace of V.

(b) Prove that the sum

$$U_1 + U_2 = \{v_1 + v_2 \in V \mid v_1 \in U_1 \text{ and } v_2 \in U_2\}$$

is again a subspace of V.

- 7. Let V be a vector space over a field F and let  $v_1, \ldots, v_r$  be a collection of vectors in V. Show that Span  $\{v_1, \ldots, v_r\}$  is the smallest subspace of V containing the vectors  $v_1, \ldots, v_r$ . That is, show that if U is a subspace of V such that  $v_1, \ldots, v_r \in U$ , then Span  $\{v_1, \ldots, v_r\} \subseteq U$ .
- **8.** Determine whether or not the vectors

$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

span  $\mathbb{R}^3$ .

- **9.** Determine whether or not the vectors  $x^2 + x + 1$ ,  $x^2 + x 1$ , x + 2 span  $\mathcal{P}_2(\mathbb{R})$ , the set of all polynomials of degree at most 2 with coefficients in  $\mathbb{R}$ .
- 10. Let V be a vector space over a field F and let  $v_1, \ldots, v_r$  be a collection of vectors that span V. Show that if each  $v_i$  can be written as a linear combination of the vectors  $w_1, \ldots, w_s$ , then  $w_1, \ldots, w_s$  also span V.