ASSIGNMENT 4, DUE WEDNESDAY 21 FEBRUARY

- **1.** Let A and B be sets. Prove that $A \subseteq A \cup B$. Identify which tautology you are using in your proof.
- **2.** Let A, B and C be sets. Prove that $A (B \cup C) = (A B) \cap (A C)$.
- **3.** Let the universe be the set \mathbb{Z} . Let E, D, \mathbb{Z}^+ and \mathbb{Z}^- be the sets of all even, odd, positive and negative integers, respectively. Find the following in terms of unions and intersections of the above sets, along with $\{0\}$.
 - (a) $E \mathbb{Z}^+$.
 - (b) $\mathbb{Z}^{+} E$.
 - (c) D E.
 - (d) $(\mathbb{Z}^+)^c$.
 - (e) $\mathbb{Z}^+ \mathbb{Z}^-$.
 - (f) E^c .
 - (g) $E \mathbb{Z}^-$.
 - (h) $(E \cap \mathbb{Z}^-)^c$.
 - (i) \varnothing^c .
- **4.** Prove that if A is a set, then $A \times \emptyset = \emptyset$.
- **5.** Let A and B be subsets of a set U. Prove that $A \cap B = \emptyset$ if and only if $A \subseteq B^c$.